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Abstract

We present an abstract mathematical framework for an optimization-based ad-
ditive decomposition of a large class of variational problems into a collection of
concurrent subproblems. The framework replaces a given monolithic problem
by an equivalent constrained optimization formulation in which the subprob-
lems define the optimization constraints and the objective is to minimize the
mismatch between their solutions. The significance of this reformulation stems
from the fact that one can solve the resulting optimality system by an iterative
process involving only solutions of the subproblems. Consequently, assuming
that stable numerical methods and efficient solvers are available for every sub-
problem, our reformulation leads to robust and efficient numerical algorithms
for a given monolithic problem by breaking it into subproblems that can be
handled more easily. An application of the framework to the Oseen equations
illustrates its potential.

Keywords: Optimization, additive decomposition, weakly coercive problems,
Oseen’s equations, finite elements.

1. Introduction

We present an abstract framework for the additive decomposition of a large
class of variational problems into a collection of concurrent subproblems. The
framework comprises three distinct stages. Given a weakly coercive variational
equation, the first stage decomposes the corresponding bilinear form into a fi-
nite sum of weakly coercive bilinear subforms. At the second stage we use these
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subforms to define a collection of independent variational subproblems with un-
determined right hand sides. The final, third stage reconnects the subproblems
into a constrained optimization problem. The optimization objective is to mini-
mize the mismatch between the solutions of the subproblems, the undetermined
right hand sides provide the (distributed) controls, and the subproblems define
the optimization constraints.

This paper continues our previous efforts [1, 2] on optimization-based ad-
ditive operator decomposition. Its primary purpose is to enable an efficient
numerical solution of a given monolithic problem by breaking it into smaller
pieces that can be handled more easily. Specifically, optimization-based refor-
mulation allows us to synthesize stable discretizations and efficient solvers for
the monolithic problem from stable discretizations and efficient solvers for its
subproblems. Such a capability can be useful in multiple contexts.

For instance, for concurrent multiphysics problems, i.e., problems where
multiple physics operators act simultaneously on the same physical domain,
the subproblems in our framework can correspond to the constituent physics
components of the multiphysics problem, for which stable discretizations and
efficient solvers can be obtained more easily than for the monolithic problem.
Another possible scenario arises when a given problem can be written as a sum
of subproblems with better computational properties. For example, one can
write an advection-dominated operator as a sum of two diffusion-dominated
suboperators [1]. In either case, the framework allows us to synthesize dis-
cretizations and solvers for the parent problem from discretizations and solvers
for its subproblems.

This work improves upon the results in [1, 2] in several important ways.
Specifically, we extend the abstract additive splitting framework [1] to weakly
coercive problems, which effectively enables its application to virtually any Par-
tial Differential Equation (PDE) problem. We also prove that the abstract opti-
mization problem and its approximation are well-posed without penalization of
the objective by the control. This significantly strengthens the result in [2] where
well-posedness without penalization was shown only for the algebraic versions of
the optimization problem. Most notably, the absence of a control penalty in the
new formulation brings about important algorithmic advantages upon [1] and
other operator–splitting strategies. First, it implies that the resulting optimiza-
tion problem is an equivalent reformulation of the original equations. Second, it
allows us to significantly simplify the associated optimality system and exploit
it for the design of efficient iterative solvers. Third, the simplified optimality
system prompts a simple yet efficient preconditioner that shows minimal mesh
dependence.

In the recent years there has been a steady interest in exploiting optimization
and control ideas for the efficient solution of PDEs. Two important examples
are the optimization-based domain decomposition [3, 4, 5, 6] and heterogeneous
domain decomposition [7, 8, 9, 10, 11, 12], which focus on merging operators
acting in different parts of the computational domain. In the former case these
operators are restrictions of the governing equations to overlapping or non-
overlapping subdomains of the original domain and the primary purpose of the
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decomposition is to enable a more efficient solution of the equations. In the
latter case, optimization is used to merge two fundamentally different material
descriptions separated by a physical interface, such as atomistic and continuum
models [10], fluid and structure [12], or surface and subsurface flows [8].

The emphasis of this paper on the coupling of concurrent operators that
act on the same physical domain is a key distinction between our work and
the efforts cited above. From this point of view the decomposition of operators
and energy spaces by replicas and virtual controls [13, 14, 15, 16] is the closest
to our approach. However, there are some key differences in the manner in
which we define the suboperators and effect their coupling. For instance, the
virtual controls in [13, 14] coincide with the original PDE solution and the
constraints are “replicas” of the original PDE. In contrast, the virtual controls
in our approach do not coincide with the PDE solution and the constraints are
not equivalent to the original PDE.

The paper is organized as follows. Section 2 reviews notation and the ab-
stract setting for the framework. The core of the paper is Section 3, which intro-
duces the optimization-based additive decomposition and analyzes the resulting
optimization problem. This section also establishes the equivalence between the
latter and the original equations. Section 4 discusses the discretization of the
optimization problem, including well-posedness of the approximate optimization
problem, while Section 5 focuses on the design of efficient solvers for the discrete
optimality system. Finally, in Section 6 we apply the framework to synthesize
an efficient iterative solver for the Oseen equations.

2. Abstract setting

We consider optimization–based additive operator decomposition of weakly
coercive variational problems. The abstract setting for such problems involves
two Hilbert spaces: a trial (solution) space U , and a test function space V . Let
V ∗ denote the dual of V and 〈·, ·〉V ∗,V is the duality pairing between V ∗ and V .
We assume that there exists a third, pivot Hilbert space H such that {V,H, V ∗}
is a Gelfand triple [17, Definition 17.1, p.262]. This means that

〈f, v〉V ∗,V = (f, v)H ∀ f ∈ V ∗ ; ∀ v ∈ V , (1)

and V ⊂ H ⊂ V ∗ with continuous embeddings.
The abstract variational problem is defined by a bilinear form B(·, ·) : U ×

V 7→ R and a dual element f ∈ V ∗. The objective is to find u ∈ U such that

B(u, v) = (f, v)H ∀ v ∈ V . (2)

We assume that B(·, ·) is weakly coercive and continuous, i.e., there exist posi-
tive constants γ01 and γ02 such that

sup
v∈V

B(u, v)

‖v‖V
≥ γ01‖u‖U and sup

u∈U

B(u, v)

‖u‖U
> 0

B(u, v) ≤ γ02‖u‖U ‖v‖V ∀u ∈ U, ∀v ∈ V .
(3)
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Nećas theorem [18, 19] asserts that conditions (3) are sufficient for (2) to have
a unique solution u ∈ U , which depends continuously on the data:

‖u‖U ≤
1

γ01
‖f‖V ∗ . (4)

3. Optimization-based additive operator splitting

We assume that B(·, ·) can be written as a finite sum of weakly coercive
subproblems that are “easier” to solve1 than the original equation (2). To
explain the key ideas of the optimization-based additive operator splitting it
suffices to consider the decomposition of B(·, ·) into a sum of two subproblems.
Thus, we assume that there exist bilinear forms Bi(·, ·) : U × V 7→ R; and
positive constants γi1 and γi2, i = 1, 2, such that

B(·, ·) = B1(·, ·) +B2(·, ·), (5)

and 
sup
v∈V

Bi(u, v)

‖v‖V
≥ γi1‖u‖U and sup

u∈U

Bi(u, v)

‖u‖U
> 0 ;

Bi(u, v) ≤ γi2‖u‖U ‖v‖V ∀u ∈ U, ∀v ∈ V .
(6)

We propose to reformulate (2) as the constrained optimization problem
min

u1,u2∈U ; θ∈V
J(u1, u2) =

1

2
‖u1 − u2‖2H

subject to

{
B1(u1, v1)− (θ, v1)V = (f, v1)H ∀ v1 ∈ V
B2(u2, v2) + (θ, v2)V = 0 ∀ v2 ∈ V ,

(7)

where u1, u2 ∈ U are state variables and θ ∈ V is a virtual distributed control.
Our strategy is to exploit the structure of (7) for the development of efficient

solution algorithms for the original equation (2). For this strategy to work, the
optimization problem (7) must be well posed and its optimal states u1, u2 must
provide an accurate approximation to the solution of (2). In the next section we
prove that both of these prerequisites hold for (7). In fact, we show that (7) is
an equivalent reformulation of (2), i.e., for any solution u of the latter the pair
u1 = u2 = u is an optimal state of (7).

Remark 1. Typically, PDE-constrained optimization problems fail to be well-
posed without a control penalty term ε‖θ‖2V in the cost functional. This is not
the case for (7), which turns out to be well-posed without a such a term. This
result implies the equivalence of (2) and (7), and improves upon our previous
work [1], where the analysis required a control penalty.

1The precise meaning of this statement depends on the context and could range from the
availability of iterative solvers optimized for the component subproblems to discretizations
that are better suited for the physics represented by these subproblems.
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3.1. Lagrange multiplier solution

By using Lagrange multipliers {λ1, λ2} ∈ V × V to enforce the constraints
one can replace the constrained minimization of (7) by the unconstrained opti-
mization problem of finding the stationary points of the Lagrangian functional

L({u1, u2, θ}, {λ1, λ2}) = J(u1, u2)+(
B1(u1, λ1)− (θ, λ1)V − (f, λ1)H

)
+
(
B2(u2, λ2) + (θ, λ2)V

)
.

(8)

Taking the first variations of L with respect to the states, controls and the
Lagrange multipliers, one easily finds that the necessary optimality condition for
the saddle point {{u1, u2, θ}, {λ1, λ2}} of (8) is given by the following variational
problem: seek {{u1, u2, θ}, {λ1, λ2}} ∈ {U × U × V } × {V × V } such that

(u1 − u2, û1 − û2)U +B1(û1, λ1) +B2(û2, λ2) = 0 ∀û1, û2 ∈ U

(θ̂, λ2 − λ1)V = 0 ∀θ̂ ∈ V

(θ, λ̂2 − λ̂1)V +B1(u1, λ̂1) +B2(u2, λ̂2) = (f, λ̂1)H ∀λ̂1, λ̂2 ∈ V .
(9)

Let X = U × U × V , Y = V × V . Define a bilinear form A : X ×X 7→ R

A
(
{u1, u2, θ}, {v1, v2, ψ}

)
=
(
u1 − u2, v1 − v2

)
U
,

and a bilinear form B : X × Y 7→ R,

B
(
{u1, u2, θ}, {λ1, λ2}

)
= (θ, λ2 − λ1)V +B1(u1, λ1) +B2(u2, λ2) .

In terms of A and B the optimality system (9) assumes a canonical mixed
structure of [20]. To show that (9) is well-posed we check the conditions of the
abstract saddle–point theory in [20]. Obviously, A and B are continuous and
so, we focus on the verification of the coercivity on the nullspace condition for
A and the inf-sup condition for B. The nullspace of B is

Z =
{
{u1, u2, θ} ∈ X | B

(
{u1, u2, θ}, {λ1, λ2}

)
= 0 ∀ {λ1, λ2} ∈ Y

}
.

Our first result shows that control penalty is not necessary for A to be coercive
on this space.

Lemma 1. There is a positive constant γA such that

γA
(
‖u1‖2U + ‖u2‖2U + ‖θ‖2V

)
≤ A({u1, u2, θ}, {u1, u2, θ}) (10)

for all {u1, u2, θ} ∈ Z.

Proof. Any {u1, u2, θ} ∈ Z satisfies the identity

(θ, λ̂2 − λ̂1)V +B1(u1, λ̂1) +B2(u2, λ̂2) = 0 ∀λ̂1, λ̂2 ∈ V .

5



Setting λ̂1 = λ̂2 = λ̂ in this equation yields the identity

B1(u1, λ̂) +B2(u2, λ̂) = 0 ∀λ̂ ∈ V,

while adding and subtracting B1(u2, λ̂) and B2(u1, λ̂) gives

B1(u1 − u2, λ̂) +B1(u2, λ̂) +B2(u2, λ̂) = 0 ∀λ̂ ∈ V

B2(u2 − u1, λ̂) +B1(u1, λ̂) +B2(u1, λ̂) = 0 ∀λ̂ ∈ V ,

After accounting for B(·, ·) = B1(·, ·) +B2(·, ·),

B(u2, λ̂) = −B1(u1 − u2, λ̂) ∀λ̂ ∈ V

B(u1, λ̂) = −B2(u2 − u1, λ̂) ∀λ̂ ∈ V ,

Using the inf-sup condition (3) and the continuity of Bi,

γ01‖u2‖U ≤ sup
λ̂∈V

B(u2, λ̂)

‖λ̂‖V
= sup
λ̂∈V

−B1(u1 − u2, λ̂)

‖λ̂‖V
≤ γ12‖u1 − u2‖U ,

γ01‖u1‖U ≤ sup
λ̂∈V

B(u1, λ̂)

‖λ̂‖V
= sup
λ̂∈V

−B2(u2 − u1, λ̂)

‖λ̂‖V
≤ γ22‖u1 − u2‖U .

Therefore, for any {u1, u2, θ} ∈ Z there holds

‖u1 − u2‖U ≥
γ01

2γ22
‖u1‖U +

γ01

2γ12
‖u2‖U .

Furthermore, if {u1, u2, θ} ∈ Z,we have that

(θ, λ̂2)V +B2(u2, λ̂2) = 0 ∀λ̂2 ∈ V,

−(θ, λ̂1)V +B1(u1, λ̂1) = 0 ∀λ̂1 ∈ V.

Setting λ̂1 = θ and λ̂2 = −θ above yields

‖θ‖2V = B2(u2, θ) ≤ γ22‖u2‖U‖θ‖V ,

‖θ‖2V = B1(u1, θ) ≤ γ12‖u1‖U‖θ‖V

or, equivalently,

‖θ‖V ≤ γ12‖u1‖U and ‖θ‖V ≤ γ22‖u2‖U .

Combining all inequalities yields the bound

‖u1 − u2‖U ≥
γ01

2γ22
‖u1‖U +

γ01

4γ12
‖u2‖U +

γ01

4γ22γ12
‖θ‖V
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which implies (10) with

γA = γ2
01 min

{(
1

2γ22

)2

,

(
1

4γ12

)2

,

(
1

4γ22γ12

)2
}
.

This completes the proof. �

The following lemma verifies the inf-sup condition for B.

Lemma 2. There is a positive constant γB such that

sup
{u1,u2,θ}∈X

B
(
{u1, u2, θ}, {λ1, λ2}

)
‖u1‖U + ‖u2‖U + ‖θ‖V

≥ γB
(
‖λ1‖V + ‖λ2‖V

)
(11)

for all {λ1, λ2} ∈ Y .

Proof. Let {λ1, λ2} ∈ Y . The mapping

v → (λi, v)V , i = 1, 2,

defines a continuous linear functional from V to R. By assumption, the compo-
nent forms Bi(·, ·) are weakly coercive and continuous. Therefore, for i = 1, 2,
the variational equation: seek ui(λi) ∈ U such that

Bi(ui(λi), v) = (λi, v)V ∀v ∈ V

has a unique solution ui(λi) and

‖ui(λi)‖U ≤
1

γi1
‖λi‖V . (12)

Setting {u1, u2, θ} = {u1(λ1), u2(λ2), 0} gives the identity

B
(
{u1(λ1), u2(λ2), 0}, {λ1, λ2}

)
= B1(u1(λ1), λ1) +B2(u2(λ2), λ2) = ‖λ1‖2V + ‖λ2‖2V .

The lemma follows from this identity and (12). �

3.2. Equivalence of reformulated and original problems

From the abstract mixed theory of [20] it follows that the optimality sys-
tem (9) has a unique solution {u1, u2, θ} ∈ X, {λ1, λ2} ∈ Y , which depends
continuously on the data. The component {u1, u2, θ} solves the constrained
minimization problem (7). We establish equivalence of (2) and the optimization
problem in two steps.

Proposition 1. Let u ∈ U denote a solution of (2). There exists a virtual
control θ(u) ∈ V such that the triple {u, u, θ(u)} is a solution of (7).
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Proof. Let u ∈ U be solution of (2). Owing to the continuity of component
bilinear forms, B2(u, ·) is a continuous linear functional on V and the problem:
seek θ ∈ V such that

(θ, v)V = −B2(u, v) ∀v ∈ V

has a unique solution θ(u). It follows that

B2(u, v) + (θ(u), v)V = 0 ∀v ∈ V ,

that is the pair {u, θ(u)} satisfies the second constraint in (7). On the other
hand, the identity (f, v)H = B(u, v) = B1(u, v) +B2(u, v) implies that

B1(u, v)− (θ(u), v)V = B1(u, v) +B2(u, v) = (f, v)H ∀v ∈ V ,

that is {u, θ(u)} also satisfies the first constraint. Therefore, the triple {u, u, θ(u)}
is feasible. It is also a minimizer, as J(u, u) = 0. �

Theorem 1. Assume that u ∈ U solves (2) and {u1, u2, θ} is a solution of (7).
Then u1 = u2 = u.

Proof. From Proposition 1 we know that there exist a virtual control θ(u) such
that {u, u, θ(u)} is a solution of the optimization problem. Because the solution
of (7) is unique it follows that u1 = u2 = u. �

4. Approximation of the optimization problem

This section studies the discretization of the optimization reformulation
problem (7). Assuming that weak coercivity (6) holds for the subproblems
defining the split (5) we show that a stable discretization of the abstract prob-
lem (2) induces a stable discretization of (7). This implies well-posedness of
the discrete optimization problem without a control penalty in the objective,
optimal error estimates, and equivalence of the discrete solutions of (2) and (7).

Suppose that Uh ⊂ U and V h ⊂ V form a stable pair for (2), i.e., there
exists a positive constant γh01, independent of h and such that2

sup
vh∈V h

B(uh, vh)

‖vh‖V
≥ γh01‖uh‖U and sup

uh∈Uh

B(uh, vh)

‖uh‖U
> 0 . (13)

A restriction of (2) to {Uh, V h} defines an approximation of the monolithic
problem given by: seek uh ∈ Uh such that

B(uh, vh) = (f, vh)H ∀ vh ∈ V h . (14)

Discrete weak coercivity conditions (13) imply that (14) is a well-posed problem.

2Continuity of B(·, ·) is inherited on any conforming approximations of U and V , i.e.,
B(uh, vh) ≤ γ02‖uh‖U ‖vh‖V for all uh ∈ Uh and vh ∈ V h.
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A restriction of (7) to {Uh, V h} defines an approximation of this optimiza-
tion problem given by

min
uh
1 ,u

h
2∈Uh; θh∈V h

J(uh1 , u
h
2 ) =

1

2
‖uh1 − uh2‖2H

subject to

{
B1(uh1 , v

h
1 )− (θh, vh1 )V = (f, vh1 )H ∀ vh1 ∈ V h

B2(uh2 , v
h
2 ) + (θh, vh2 )V = 0 ∀ vh2 ∈ V h,

(15)

while a restriction of (8) to the spaces

Xh = Uh × Uh × V h ⊂ X and Y h = V h × V h ⊂ Y, (16)

defines a discrete Lagrangian functional

L({uh1 , uh2 , θh}, {λh1 , λh2}) = J(uh1 , u
h
2 )+(

B1(uh1 , λ
h
1 )− (θh, λh1 )V − (f, λh1 )H

)
+
(
B2(uh2 , λ

h
2 ) + (θh, λh2 )V

)
,

(17)

associated with (15). Finally, it is straightforward to check that a restriction of
the continuous optimality system (9) to {Xh, Y h}, i.e., the discrete variational
problem: seek {uh1 , uh2 , θh} ∈ Xh and {λh1 , λh2} ∈ Y h such that

A
(
{uh1 , uh2 , θh}, {ûh1 , ûh2 , θ̂h}

)
+ B

(
{ûh1 , ûh2 , θ̂h}, {λh1 , λh2}

)
= 0

B
(
{uh1 , uh2 , θh}, {λ̂h1 , λ̂h2}

)
=

(
f, λ̂h1

)
H

(18)

for all {ûh1 , ûh2 , θ̂h} ∈ Xh and {λ̂1, λ̂2} ∈ Y h, gives the necessary optimality
conditions for the stationary points of the discrete Lagrangian (17).

The following lemma shows that (15), resp. (18), are well-posed by verifying
that (16) is a stable pair for the continuous optimality system (9).

Lemma 3. Assume that (6) holds for B1(·, ·) and B2(·, ·), {Uh, V h} ⊂ {U, V }
is a stable pair for the composite form B(·, ·), and let

Zh =
{
{uh1 , uh2 , θh} ∈ Xh | B

(
{uh1 , uh2 , θh}, {λh1 , λh2}

)
= 0 ∀ {λh1 , λh2} ∈ Y h

}
.

Then, (16) defines a stable pair the pair {Xh, Y h} for (9): there exist positive
constants γhA and γhB, independent of h and such that

γhA
(
‖uh1‖2U + ‖uh2‖2U + ‖θh‖2V

)
≤ A({uh1 , uh2 , θh}, {uh1 , uh2 , θh}) (19)

for all {uh1 , uh2 , θh} ∈ Zh, and

sup
{uh

1 ,u
h
2 ,θ

h}∈Xh

B
(
{uh1 , uh2 , θh}, {λh1 , λh2}

)
‖uh1‖U + ‖uh2‖U + ‖θh‖V

≥ γhB
(
‖λh1‖V + ‖λh2‖V

)
(20)

for all {λh1 , λh2} ∈ Y h.
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Proof. Assumption (6) implies that B1(·, ·) and B2(·, ·) are well-posed on the
same pair of spaces as their parent form B(·, ·). As a result, any pair {Uh, V h} ⊂
{U, V } that is stable for the latter is also stable for its additive components.
Thus, from (13) it follows the existence of positive constants γhi1; i = 1, 2,
independent of h and such that

sup
vh∈V h

Bi(u
h, vh)

‖vh‖V
≥ γhi1‖uh‖U and sup

uh∈Uh

Bi(u
h, vh)

‖uh‖U
> 0, (21)

respectively. The rest of the proof follows the steps in Lemmata 1–2. �

Lemma 3 confirms that the discrete optimization problem (15), resp. the
discrete optimality system (18), remain well-posed without a control penalty
term in the cost functional. In particular, this lemma reveals that the well-
posedness of the discrete subproblems defining the constraints is sufficient to
ensure the well-posedness of (15), resp. (18). The following theorem provides
information about the approximation error of (18).

Theorem 2. Assume that (6) holds for B1(·, ·) and B2(·, ·), {Uh, V h} ⊂ {U, V }
is a stable pair for the composite form B(·, ·) and {Xh, Y h} is the pair defined in
(16). Let {u1, u2, θ} ∈ X, {λ1, λ2} ∈ Y denote a solution of (9). The solution
{uh1 , uh2 , θh} ∈ Xh, {λh1 , λh2} ∈ Y h of (18) satisfies the optimal error estimate

2∑
i=1

‖ui − uhi ‖U + ‖λi − λhi ‖V

≤ C

(
inf

ûh
1 ,û

h
2∈Uh

2∑
i=1

‖ui − ûhi ‖U + inf
λ̂h
1 ,λ̂

h
2∈V h

2∑
i=1

‖λi − λ̂hi ‖V

)
.

(22)

The theorem follows directly from the abstract approximation result in [20]. �

We conclude this section with an analogue of Theorem 1, which asserts that
the discrete optimization problem (15) is an equivalent reformulation of the
discrete monolithic problem (14).

Theorem 3. Assume that (6) holds for B1(·, ·) and B2(·, ·), {Uh, V h} ⊂ {U, V }
is a stable pair for the composite form B(·, ·). Assume that uh ∈ Uh solves (14)
and {uh1 , uh2 , θh} is solution of (15). Then uh1 = uh2 = uh.

Proof. The proof follows verbatim the proof of Theorem 1. �

5. Solution of the discrete optimization problem

Let {uhi }Ni=1 and {vhi }Ni=1 denote basis sets for Uh and V h, respectively, and

~ui, ~θ, and ~λi be the coefficient vectors of uhi , θh and λhi relative to these basis
sets. Then, it is easy to see that the discrete optimality system (18) is equivalent
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to a block linear system of algebraic equations
U −U 0 BT

1 0

−U U 0 0 BT
2

0 0 0 −V V

B1 0 −V 0 0

0 B2 V 0 0




~u1

~u2

~θ
~λ1

~λ2

 =


~0
~0
~0
~f
~0

 (23)

with blocks given by

Urs = (uhs , u
h
r )U , Bi,rs = Bi(u

h
s , v

h
r ), and Vrs = (vhs , v

h
r )V , r, s = 1, . . . , N,

respectively. The linear system (23) gives the Karush–Kuhn–Tucker (KKT)
necessary optimality conditions for the discrete optimization problem (15). The
discrete monolithic problem (14) is similarly equivalent to a block linear system

B~u = (B1 + B2)~u = ~f (24)

where ~u is the coefficient vector of the solution to (14).
Recall the assumption that the component forms Bi(·, ·) are “easier” to

solve than the original problem involving B(·, ·). In the context of (24) this
assumption implies that the blocks B1, B2 are easier to invert than their sum
B = B1+B2, i.e., that there are robust and efficient solvers for systems involving
these matrices. We will take advantage of this fact and the structure of the KKT
system (23), which exposes these blocks to synthesize a robust and efficient
solver for (24) from the available solvers for B1 and B2.

The KKT system (23) is similar to the one studied in [1, 2], with one subtle
difference. Namely, the analysis carried out in the previous sections allows us
to bypass control penalty, i.e., we may set the (3, 3) block in [1, (3.17)] to
zero, directly yielding (23). As the next theorem shows, this has important
consequences for the design of iterative solvers for (24), and reveals a simpler
approach to additive operator decomposition based on auxiliary variables.

Theorem 4. Let (~u∗1, ~u
∗
2,
~θ
∗
, ~λ
∗
1,
~λ
∗
2) be the solution of the KKT system (23)

and ~u∗ be the solution of (24). Then, ~λ
∗
1 = ~λ

∗
2 = ~0 , ~u∗1 = ~u∗2 = ~u∗ and

(~u∗1, ~u
∗
2,
~θ
∗
) solve the reduced KKT system B1 0 −V

0 B2 V

0 0 (B−1
1 + B−1

2 )V


 ~u1

~u2

~θ

 =


~f

~0

−B−1
1
~f

 . (25)

Proof. Adding the first two rows of (23) and rearranging the matrix transforms
(23) into the following 2× 2 block upper triangular system of equations:

B1 0 −V 0 0

0 B2 V 0 0

U −U 0 BT
1 0

0 0 0 −V V

0 0 0 BT
1 BT

2




~u1

~u2

~θ
~λ1

~λ2

 =


~f
~0
~0
~0
~0

 . (26)
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The (2,2) block in (26) further reduces to[
−V V

~0 (B1 + B2)T

][
~λ1

~λ2

]
=

[
~0
~0

]
. (27)

By assumption B = B1 +B2 is nonsingular and so it follows that ~λ
∗
1 = ~λ

∗
2 = ~0 .

As a result, we can neglect the (1,2) block in (26) to obtain a 3×3 block system
for the states and the control only: B1 0 −V

0 B2 V

U −U 0


 ~u1

~u2

~θ

 =

 ~f

~0

~0

 . (28)

Performing two steps of block Gaussian elimination to remove blocks (3,1) and
(3,2) in (28) results in the reduced KKT system (25).

To complete the proof it remains to verify that ~u∗1 = ~u∗2 = ~u∗. Solving (28)
by back substitution we find that

~θ
∗

= −V−1(B−1
1 + B−1

2 )−1B−1
1
~f (29)

~u∗1 = B−1
1 (~f + V~θ

∗
) (30)

~u∗2 = −B−1
2 V~θ

∗
. (31)

It is easy to check that

(B−1
1 + B−1

2 )−1 = (B−1
1 B2B

−1
2 + B−1

1 B1B
−1
2 )−1

= (B−1
1 (B2 + B1)B−1

2 )−1 = B2(B1 + B2)−1B1 ,

or, equivalently,

(B1 + B2)−1 = B−1
2 (B−1

1 + B−1
2 )−1B−1

1 . (32)

Using (32) and (29) we find that

~u∗2 = −B−1
2 V~θ

∗
= B−1

2 (B−1 + B−1
2 )−1B−1

1
~f = B−1~f = ~u∗ .

Using again (32) and (29) together with ~f = B~u, and B = B1 + B2 gives

~u∗1 = B−1
1 (~f + V~θ

∗
)

= B−1
1
~f −B−1

1 (B−1 + B−1
2 )−1B−1

1
~f

= B−1
1 B~u∗ −B−1

1 B2

(
B−1

2 (B−1 + B−1
2 )−1B−1

1

)
B~u∗

= B−1
1 (B1 + B2)~u∗ −B−1

1 B2B
−1B~u∗ = ~u∗.

This completes the proof. �.

The back substitution sequence (29)-(31) in Theorem 4 defines an iterative
procedure for the solution of the KKT system (23). At the same time, the

12



related equation (32) reveals a more direct approach to deriving the same de-
composition. Specifically, assuming that V is the discrete identity operator, the
splitting scheme defined by (32) is equivalent to the scheme defined by (29)-(31).

Furthermore, due to ~u∗1 = ~u∗2 = ~u∗, the system (28) can be reduced to the
system [

B1 −V
B2 V

] [
~u
~θ

]
=

[
~f
~0

]
, (33)

illustrating a different application of auxiliary variables in deriving the additive
decomposition, which bypasses the optimization formulation. We should note,
however, that the derivation of the system (33) is not obvious at first. In
contrast, the optimization framework automates and formalizes the discovery of
operator decompositions. Additionally, optimization formulations may remain
well posed even if B1 or B2 are singular.

We use the iterative procedure defined by the back substitution (29)-(31) for
all numerical experiments in Section 6.4.

Remark 2. In [1, p. 3947] we developed a solution procedure for the KKT

system based on a reduced formulation in terms of the control vector ~θ. In that
context (using the current notation) the optimal control is given as the solution
of the linear system(

V(B−T1 + B−T2 )U(B−1
1 + B−1

2 )V + εR
)
~θ = −V(B−T1 + B−T2 )UB−1

1
~f ,

where R is the discretization of an inner product operator defined on the control
space. In light of the new analysis, we can eliminate the term εR, and obtain
the equation

V(B−T1 + B−T2 )U(B−1
1 + B−1

2 )V~θ = −V(B−T1 + B−T2 )UB−1
1
~f ,

which, after multiplication by U−1(B−T1 + B−T2 )−1V−1, reduces to

(B−1
1 + B−1

2 )V~θ = −B−1
1
~f .

Thus, in the absence of a control penalty and assuming U is the identity, the
approach in [1] amounts to solving the normal equations of (29).

6. Application to the Oseen equations

In this section we apply the optimization-based decomposition framework to
the Oseen equations given by{

−ν∆u + (b · ∇)u +∇p = f in Ω

∇ · u = 0 in Ω,
(34)

13



where ν is the kinematic viscosity, b is a given advective vector, u is the velocity,
p is the pressure and f is the body force. For simplicity, we complete the spec-
ification of the governing equations by augmenting (34) with the homogeneous
velocity boundary condition

u = 0 on Γ

and the zero mean pressure constraint∫
Ω

pdx = 0.

Our principal objective is to demonstrate the potential of the optimization-
based decomposition approach for the design of robust and efficient iterative
solvers for incompressible flows. Linearization of the Navier-Stokes equations
by a fixed point method or a Newton-type method results in problems that
are either identical or similar in structure to (34). Consequently, availability
of robust solvers with optimal complexity for (34) is a prerequisite towards the
robust and efficient solution of the nonlinear Navier-Stokes equations. The rate
of convergence of these solvers should be independent of the mesh size and
depend only mildly if at all on the kinematic viscosity ν.

Yet, formulation of such solvers remains a challenge, especially for small
viscosity values; see e.g., [21, 22, 23] and the references therein. Numerical
studies in these papers cover viscosities ranging from 0.1 to 0.001 and show
deterioration of convergence rates at the lower end of this interval and as the
mesh size is reduced.

Interestingly enough, some of the methods in these papers also utilize ad-
ditive operator splittings but with two important distinctions. First, the split-
tings employed there follow either a physics-based decomposition of the equa-
tions, or a dimension-based decomposition along the coordinate directions. The
Hermitian/skew-Hermitian splitting in [21] is an example of the first approach,
which writes the Oseen operator as a sum of an elliptic vector Laplacian term
and a hyperbolic convection term. The method in [23] writes the two dimen-
sional Oseen operator as a sum of two scalar advection-diffusion equations acting
in each one of the coordinate directions and is an example of the second kind
of splittings. In either case, the design of the iterative algorithm is specifically
tailored to the splitting employed. In contrast, our approach is agnostic to the
kind of splitting used and only requires well-posedness of the subproblems. For
instance, we could in principle apply the optimization-based decomposition in
this paper with the same splittings as in [21, 23].

The second important distinction is in the type of iterative schemes resulting
from the splittings. In [21, 23] the splittings are used in an alternating iteration
scheme that switches back and forth between the subproblems. In contrast, our
approach leads to an iteration process (29)-(31) involving an auxiliary variable
(the virtual control), which is not equivalent to an alternating iteration scheme.

6.1. Variational formulation of the Oseen equations

We recall the space L2(Ω) of all square integrable functions and its subspace
L2

0(Ω) of all square integrable functions with zero mean. We will also need the
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Sobolev space H1(Ω) of all square integrable vector fields whose first derivatives
are also square integrable, and its subspace H1

0(Ω) comprising all vector fields
with zero trace on Γ.

To specialize the abstract framework in Section 3 to (34) we associate (2)
with the weak variational form of the Oseen equations: seek u ∈ H1

0(Ω) and
p ∈ L2

0(Ω) such that{
a(u,v) + b(p,v) = (f,v) ∀v ∈ H1

0(Ω)

−b(q,u) = 0 ∀q ∈ L2
0(Ω) ,

(35)

where

a(u,v) = ν(∇u,∇v) + (b · ∇u,v) and b(q,v) = −(q,∇ · v) . (36)

With the identifications U = V = H1
0(Ω)× L2

0(Ω), H = L2(Ω), and

B(u, p;v, q) = a(u,v) + b(p,v)− b(q,u) , (37)

problem (35) assumes the abstract form (2). It is a standard result that (35) is
well-posed [24] and that B(·, ·) satisfies the weak coercivity conditions (3), i.e.,
it fulfills the requirements of Section 2.

6.2. Optimization-based additive decomposition of the Oseen equations

Recall that the ability to decompose B(·, ·) into a sum of two subproblems
that are “easier to solve” is a key assumption of the abstract framework. In the
context of the Oseen equations this means that the subproblems should have
better ratios between the viscosity and the velocity than the original problem.
Such a split can be accomplished in many ways, including the decompositions
described in [21, 23]. Here we choose to effect the splitting by adding and
subtracting a Stokes operator with viscosity σ > ν to (37). In other words, we
write

B(u, p;v, q) = B1(u, p;v, q) +B2(u, p;v, q) (38)

where

B1(u, p;v, q) = σ(∇u,∇v) + (b · ∇u,v)− 2(p,∇ · v) + 2(q,∇ · u)

is an Oseen operator with a larger viscosity coefficient and

B2(u, p;v, q) = (ν − σ)(∇u,∇v) + (p,∇ · v)− (q,∇ · u),

is a Stokes operator, respectively. Again, it is a standard result that both B1(·, ·)
and B2(·, ·) are continuous and weakly coercive on U = H1

0(Ω) × L2
0(Ω), i.e.,

(6) holds for these forms. As a result, B1 and B2 fulfill the requirements of the
abstract framework.
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Remark 3. To shed some more light on (38) it is instructive to examine the
strong form of the splitting. It is easy to see that (38) corresponds to writing
(34) as the following sum:[ −σ∆u + (b · ∇)u + 2∇p

2∇ · u

]
+

[
(σ − ν)∆u−∇p

−∇ · u

]
=

[
f

0

]
. (39)

By choosing a sufficiently large splitting parameter σ one can ensure that both
subproblems are dominated by the Laplacian operator, which makes both of them
easier to solve than the original equation. Numerical results in Section 6.4 reveal
that optimization-based decomposition only mildly depends on the size of this
parameter.

To complete the specialization of (7) to the Oseen equations we introduce
the objective

J(u1, p1;u2, p2) =
1

2

(
‖u1 − u2‖21 + ‖p1 − p2‖20

)
and the virtual controls θ = {ξ, r} ∈ U = H1

0(Ω) × L2
0(Ω). With these specifi-

cations, (7) assumes the form
minimize J(u1, p1;u2, p2) subject to

B1(u1, p1;v1, q1)− (ξ,v1)1 − (r, q1)0 = (f,v1)0 ∀ {v1, q1} ∈ U
B2(u2, p2;v2, q2) + (ξ,v2)1 + (r, q2)0 = 0 ∀ {v2, q2} ∈ U.

(40)

Remark 4. It is instructive to examine the alternative application of the aux-
iliary variables, which bypasses the optimization formulation to arrive directly
at equations (33). In the present context, these equations can be derived by first
writing (34) as the sum[ −σ∆u + (b · ∇)u + 2∇p− ξ

2∇ · u− r

]
+

[
(σ − ν)∆u−∇p+ ξ

−∇ · u + r

]
=

[
f

0

]
. (41)

followed by formally separating the two equations and assigning the right hand
side to the first operator. However, as pointed out, this derivation is not imme-
diately obvious and depends on serendipity to discover the auxiliary variables.

6.3. Discretization

An attractive computational property of our framework is that any stable
discretization of the original equations induces a stable discretization of the
associated optimality system. As a result, in order to obtain stable and accurate
discretization of the optimization reformulation (40) it suffices to take any finite
element subspace of U = H1

0(Ω)×L2
0(Ω) that is stable for the Oseen equations.

Moreover, for any such space the optimal approximation result in Theorem 2
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carries over to the approximation of (40). For brevity we omit the specialization
of these results as they are straightforward.

Let K(Ω) denote a uniformly regular partition of the computational domain
into triangular finite elements κ. In this paper we use the Taylor-Hood finite
element, which is a standard stable velocity-pressure pair for incompressible
flows [25], to discretize (40). In this element the velocity is approximated by
C0 piecewise quadratic polynomials, whereas the pressure is approximated by
C0 piecewise linear polynomials. Although there are several modifications of
the Taylor-Hood element, e.g., aiming to improve its mass conservation, their
consideration is beyond the scope of this paper.

6.4. Numerical examples

We present four numerical studies, the first verifying formulation equiva-
lence, the second demonstrating mesh independence, the third examining the
sensitivity to the splitting parameter σ, and the fourth examining the depen-
dence on the viscosity parameter ν.

0 1 2 3 4 5 6 7 8
0

0.5

1

Figure 1: Computational mesh K(Ω); represents the ‘initial’ (Level-1) mesh.

The computational domain Ω is defined as the two-dimensional backward-
facing step channel, a widely used benchmark. The geometry of the channel
and the boundary conditions are described, e.g., in [26, p. 1767ff.]. In our
setup, the advective vector b is fixed, and given as the velocity solution of the
Stokes equations. The magnitude of b is independent of the viscosity ν, with
the approximate value ‖b‖0 ≈ 0.556. As explained above, we discretize the
Oseen equations and the two subproblems using the Taylor-Hood element.

We consider a sequence of computational meshes, based on a subdivision of
the domain into rectangles, followed by a splitting of each rectangle into two
triangles, as shown in Figure 1. We call the mesh depicted in Figure 1 the Level-
1 mesh. Subsequent meshes are obtain via a uniform refinement of each rectangle
in the Level-1 mesh into n×n rectangles, followed by a splitting into triangles.
We will perform numerical studies on Level-n meshes with n ∈ {1, 2, 4, 8, 16}.
Note that while the Level-1 mesh contains 352 triangles, the Level-16 mesh
contains 90,112 triangles.

The first experiment verifies computationally the equivalence between the
original problem and its optimization reformulation. In this experiment we com-
pare finite element solutions of (35) and (40) computed on the Level-1 mesh. To
solve equation (29) we use left-preconditioned GMRES with the preconditioner
V−1B1, and recover the state variables by solving the equations (30) and (31).
We note that the preconditioner is motivated by the form of equation (29). We
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measure the `2 error in the obtained state variables, with respect to a direct
solution of the Oseen equations, (35). For this experiment the GMRES stopping
tolerance is set to 10−8. The viscosity is set to ν = 5 · 10−3, which is of interest
because the flow separates (yet remains steady) and recirculation develops in a
region around the point (1.3, 0.25). We set the splitting parameter to σ = 1.
From Table 1 we observe that the `2 error approximately equals the GMRES
stopping tolerance, for all solution components. Figure 2 and Figure 3 confirm
this visually.

Solution component `2 error

u1 horizontal 8.69e-07
u1 vertical 2.51e-06

p1 6.21e-07

u2 horizontal 8.73e-07
u2 vertical 2.52e-06

p2 8.29e-07

Table 1: The `2 error in the solution components of the optimization-based decomposition
(40), with respect to the direct solution of of (35). The error is roughly on the order of the
GMRES stopping tolerance.

0 1 2 3 4 5 6 7 8
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Velocity PDE
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0 1 2 3 4 5 6 7 8
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0 1 2 3 4 5 6 7 8
0

0.5

1
Velocity Opt 2

x

y

Figure 2: Velocity components of the solution of (35), labeled ‘PDE’, and the solution of (40),
labeled ‘Opt 1’ and ‘Opt 2’.

The second experiment examines the mesh dependence of our optimization-
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Figure 3: Pressure components of the solution of (35), labeled ‘PDE’, and the solution of
(40), labeled ‘Opt 1’ and ‘Opt 2’.

based scheme. The viscosity is again set to ν = 5 · 10−3. The GMRES stopping
tolerance is set to 10−6. We choose the splitting parameter to be σ = 1, resulting
in the repeated solution of a Stokes problem and an Oseen problem with similar
magnitudes of viscosity and advection. Table 2 clearly demonstrates that the
performance of the iterative solver is independent of the mesh size. Additionally,
the numbers of iterations required to solve the optimization problem are modest.
We emphasize that each optimization iteration only involves the solution of
“nice” Stokes and Oseen systems.

The third experiment tracks the performance of our algorithm for a wide
range of splitting parameters σ. As before, the viscosity is set to ν = 5 · 10−3,
and the GMRES stopping tolerance is set to 10−6. For this study we choose the
Level-4 mesh. Table 3 shows that the performance of the optimization-based

Mesh Level #Cells #Degrees of Freedom #Iterations

1 352 1,727 37
2 1,408 6,619 39
4 5,632 25,907 40
8 22,528 102,499 40
16 90,112 407,747 38

Table 2: The number of GMRES iterations (#Iterations) as the mesh is refined, for the viscosity
ν = 5 · 10−3 and the splitting parameter σ = 1. The performance of the optimization-based
decomposition is independent of the mesh size. The total iteration numbers are modest.
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Splitting Parameter σ 1e-2 1e-1 1 1e+1 1e+2 1e+3 1e+4

#Iterations 34 34 40 47 54 63 75

Table 3: The number of GMRES iterations (#Iterations) as the splitting parameter σ increases,
for the viscosity ν = 5·10−3 and the Level-4 mesh. The performance of the optimization-based
decomposition is only mildly dependent on the size of the splitting parameter.

solver is only mildly dependent on the splitting parameter. The number of
GMRES iterations merely doubles as σ increases six orders of magnitude. We
note that for σ = 104 the Oseen system solved at every optimization iteration is
dominated by an effective viscosity of 104 (recall the magnitude of the advection,
≈ 0.556). In other words, the optimization iteration comprises a Stokes solve
and a near-Stokes solve.

Viscosity ν 1e+2 1e+1 1e-1 1e-2 5e-3

#Iterations 4 4 6 22 40

Table 4: The number of GMRES iterations (#Iterations) as the viscosity decreases, for the
splitting parameter σ = 1 and the Level-4 mesh. The performance of the optimization-based
decomposition is mildly dependent on the viscosity.

The fourth experiment studies our solver’s performance for a fixed splitting
parameter, σ = 1, and viscosities ranging from 5 · 10−3 to 100. For this study
we use the Level-4 mesh and a GMRES stopping tolerance of 10−6. Table 4 re-
veals a modest growth in GMRES iteration numbers as the viscosity decreases.
Specifically, as ν decreases five orders of magnitude the iteration count goes
up by a single order of magnitude. This experiment illustrates the “raw” per-
formance of the optimization splitting without any attempts to optimize the
parameter σ for each value of ν.

7. Conclusions

We formulated and analyzed an abstract optimization framework for the
additive decomposition of weakly coercive variational problems. The purpose
of the framework is to enable an efficient solution of the original equations by
working with subproblems that are “easier” to solve.

A notable feature of the framework is the well-posedness of the reformulated
problem without a control penalty term. It implies equivalence between the
original and the reformulated problem, and enables a simplification of the at-
tendant KKT optimality system to a form that lends itself to efficient iterative
solvers.

An application of the framework to the Oseen equations, written as a sum
of a Stokes problem and an Oseen problem with a better viscosity to velocity
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ratio, results in iterative solvers that are mesh independent and have only mild
dependence on the splitting parameter for a fixed viscosity value. Likewise, for
a fixed splitting parameter the solvers exhibit a moderate dependence on the
viscosity value. Tuning of the splitting parameter for each viscosity value is an
interesting avenue of future research that may further improve the performance
of the optimization-based solver.
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